

Element Materials Technology 662 Cromwell Avenue St Paul, MN 55114-1720 USA

P 651 645 3601 F 651 659 7348 T 888 786 7555 info.stpaul@element.com element.com

Western Builders Supply 1510 Montana Avenue Billings, MT 59101 Attn: Rob Saunders

406 252 6309

Date: September 20, 2013

Author: Luke Tavernit

Report Number: ESP012657P - 233

Client Reference: 2882

AC233 MECHANICAL TESTING OF FASTENERS

Prepared by:

Luke Tavernit Materials Testing and Analysis Engineer Element St. Paul

651-659-7271

Reviewed by:

Thomas A. Kolden, P.E. **Technical Manager**

Element St. Paul

651-659-7340

It is our policy to retain components and sample remnants for 30 days from the report date, after which time they may be discarded. The data herein represents only the item(s) tested. This report shall not be reproduced, except in full, without prior permission of Element Materials

This document contains technical data whose export and re-export/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval is required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

This project shall be governed exclusively by the General Terms and Conditions of Sale and Performance of Testing Services by Element Materials Technology. In no event shall Element Materials Technology be liable for any consequential, special or indirect loss or any damages above the cost of the work.

TABLE OF CONTENTS

Introduction	3
Sample Identification	3
Summary of Mechanical Testing Performed	3
Summary of Test Results	4
Discussion	
Test Methods	6-8
Bending Yield Tests	6
Tensile and Shear Tests	6
Withdrawal Testing	
Head Pull Through Testing	
Lateral Load Testing	
Wood Members	
Specific Gravity Moisture Content	
Wolotaro Cornoritation and the control of the contr	
Test Data	9-33
Bending Yield Tests	ç
Tensile and Shear Tests	10
Withdrawal Testing	
Head Pull Through Testing	
Lateral Load Testing	18-33
Evaluation Report Tables	34-37
Table 1 – Fastener Specifications	34
Table 2 – Reference Withdrawal (W) and Pull Through (P) Design Values	35
Table 3 – Reference Lateral Design Values (Z) for Single Shear (Two-Member) Cor	
Table 4 – Connection Geometry	37
Table 5 – Exposure Conditions for Fasteners with Intended Use and Limitations of	
Recognition	37
Calculations	38-40
On a siff a Constitute and Maintains Constant	0.0
Specific Gravity and Moisture Content	
Bending Yield Strength	
Tensile and Shear Strength	
Withdrawal Reference Design Values	
Head Pull Through Reference Design Values	
Lateral Reference Design Values	
Number of specimens per data set	40
Test Equipment	41
References	41
Photographs	
Appendix A – Comparison of Tension Versus Compression for Single Shear	
Appendix B – Part Drawings of Test Specimens	48-52

INTRODUCTION

Ten (10) samples wood screw fasteners were received from Western Builders Supply, Inc located in Billings Montana. The samples were received for mechanical testing in accordance with ICC/ES AC233. The test samples were selected by an Element employee on February 20th, 2013 from inventory at Screw-Products, Inc. located at 9401 54th Avenue NW Building 1B in Gig Harbor, Washington 98332. Testing was conducted between June 1st 2013 and September 8th 2013. The following report documents this testing.

SAMPLE IDENTIFICATION

Sample Identification	Fastener Designation	Coating	Description	Part Drawing
CTX-14250	14 x 2-1/2	Bronze Star	Head suited for a star driver with built in washer.	
CTX-14400	14 x 4	Bronze Star	Head suited for a star driver with built in washer.	Figure B-1 (Page 47)
CTX-14600	14 x 6	Bronze Star	Head suited for a star driver with built in washer.	
CTX-516300	15 x 3	Bronze Star	Head suited for a star driver with built in washer.	
CTX-516400	15 x 4	Bronze Star	Head suited for a star driver with built in washer.	Figure B-2 (Page 48)
CTX-516600	15 x 6	Bronze Star	Head suited for a star driver with built in washer.	
CTX-38700	17 x 7	Bronze Star	Head suited for a star driver with built in washer.	Figure B-3
CTX-381000	17 x 10	Bronze Star	Head suited for a star driver with built in washer.	(Page 49)
BL-14600	14 x 6	Black Log	Head suited for a hex driver	Figure B-4 (Page 50)
GL-38500	17 x 5	Gray Log	Head suited for a hex driver	Figure B-5 (Page 51)

SUMMAY OF MECHANICAL TESTING PERFORMED

Fastener Strength Tests (Bending Yield, Tensile and Single Shear)

Performed on CTX-14400, CTX-516400, and CTX-381000 screws.

Withdrawal and Head Pull Through

- Performed on BL-14600 (head pull through only), GL-38500 (head pull through only), CTX-14400, CTX-516400, and CTX-381000 screws.
- Using wood with specific gravities of 0.42 and 0.55

Lateral Load Tests (Shear Tests for Wood to Wood Connections, Single Shear)

- Performed on all test samples, excluding BL-14600 and GL-38500.
- Using wood specific gravity of 0.42 and 0.55.
- Main and side members had the same specific gravity.
- Shear testing performed parallel to, and perpendicular to the grain.

SUMMAY OF TEST RESULTS

Fastener Strength Tests – Tested Load (Design Value)

Sample Identification	Bending Yield, lbf (psi)	Tensile, lbf	Shear, lbf	Tensile, psi	Shear, psi
CTX-14400	235	2,793	2,171	171,466	99,146
	(141,400)	(931)	(724)	(57,155)	(33,049)
CTX-516400	363	4,430	3,057	174,072	95,531
	(151,600)	(1,477)	(1,019)	(58,024)	(31,844)
CTX-381000	497	5,553	3,714	157,316	94,409
	(170,500)	(1,851)	(1,238)	(52,439)	(31,470)

Withdrawal and Head Pull-Through Tests – Load (Reference Design Value)

Sample	Withdrawal, lbf (lbf/in)		Pull-Through, lbf		
Identification	0.42	0.55	0.42	0.55	
CTX-14400	1,562 (156)	1,700 (170)	1,470 (294)	1,790 (358)	
BL-14600	-	-	1,010 (202)	1,195 (239)	
CTX-516400	1,415 (141)	1,835 (183)	1,490 (298)	2,015 (403)	
GL-38500	-	-	1,360 (272)	1,615 (323)	
CTX-381000	3,393 (170)	3,952 (198)	1,820 (364)	2,405 (481)	

Lateral Load Tests - Load, lbf (Reference Design Value, lbf)

	Loud 103t3	Load, Ibi (Itel	0.00	- co.g	u.u.o,	• /
	Side	Penetration	0.4	42	0	.55
Sample Identification	Member Thickness (in)	into Main Member (in)	Z _{II}	Z⊥	Z _{II}	Z⊥
CTX-14250	3/4	1-3/4	750 (150)	625 (125)	900 (180)	768 (154)
CTX-14400	1-3/4	2-1/4	910 (182)	936 (187)	1,073 (215)	1,047 (209)
CTX-14600	3	3	1,201 (240)	1,108 (222)	1,674 (335)	1,202 (240)
CTX-516300	3/4	2-1/4	783 (157)	661 (132)	1,132 (226)	899 (180)
CTX-516400	1-1/2	2-1/2	1,208 (242)	1,216 (243)	1,401 (280)	1,294 (259)
CTX-516600	2	4	1,289 (258)	1,292 (258)	1,482 (296)	1,304 (261)
CTX-38700	2-3/4	4	1,922 (384)	1,327 (265)	2,196 (439)	1,431 (286)
CTX-381000	3-1/2	6-1/2	2,350 (470)	1,367 (273)	2805 (561)	1,512 (302)

DISCUSSION

Selection of Reference Design Values for Untested Sample Sizes

Testing was not conducted on all combinations of length and diameter for each screw. Rather, the reference design values from some sets of tests were used as the design values for multiple combinations of length and diameter. The table below shows which tests were conducted, and which results were inferred from other completed tests.

Test Type:	Performed	l on:	Also Applied to:
Tension, Shear,		14 x 4	All CTX and BL 14 diameter sizes
Bending, and	CTX	15 x 4	All CTX 15 diameter sizes
Withdrawal		17 x 10	All CTX and GL 17 diameter sizes
		14 x 4	All CTX 14 diameter sizes
	CTX		All CTX 15 diameter sizes
Head Pull Through		17 x 10	All CTX 17 diameter sizes
	BL	14 x 6	All Black Log 14 diameter sizes
	GL	17 x 5	All black log 17 diameter sizes
		14 x 2-1/2	CTX 14 x 3
		14 x 4	BL 14 x 4
		14 x 6	BL 14 x 6, 8, 10, and 12
Lateral Load	СТХ	15 x 3	CTX 15 x 3-1/2
Lateral Load	CIX	15 x 4	CTX 15 x 5, GL 17 x 5
		15 x 6	-
		17 x 7	CTX 17 x 8, GL 17 x 7, GL 17 x 9
		17 x 10	CTX 17 x 12, GL 17 x 11

The tension, shear, and bending testing would have been performed exactly the same on all samples of a specified diameter. Therefore, one length of screw was selected for each diameter of screw, and applied to all lengths with that same diameter.

The Withdrawal testing would have been conducted with different depths of thread penetration into the main member for different lengths of screws. However, the design load to be reported for this test is in pounds per inch of thread depth, so the results may be extrapolated to any length of threads that are of the same design/diameter.

The head pull through tests were extrapolated to each length of screw with the same diameter as the tested sample, since the head design does not change with length. The threaded portion of each screw extended up well past the wood member, so that the only portion of the screw affecting the test was the head, which only varies with screw diameter and design, not length.

Lateral load testing results from each tested sample were used as results for multiple fasteners, with the exception of the 15 x 6 CTX screw. The results to use for an untested sample were determined in the following way. First, if there was a screw of the same diameter and length that was tested, this result was used. An example would be the GL 17 x 7 using the result from the CTX 17 x 7. If no exact diameter and length combination existed, a test with the same diameter and smaller screw length was used (assuming the side member thickness would be the same). An example would be the CTX 17 x 12 using the result from the CTX 17 x 10. Finally, if neither of the first two scenarios could be met, a result was taken from a smaller diameter screw and shorter length. An example would be the GL 17 x 5 using the result from the CTX 15 x 4, as no screw was tested with a diameter equal to the GL 17 x 5 and length as short as 5 inches.

TEST METHODS

Bending Yield Strength

Bending Yield Strength was determined in accordance with ICC/ES AC233 Section 4.1.2 "Bending Yield Strength" and ASTM F1575-03 "Standard Test Method for Determining Bending Yield Moment of Nails". Each specimen was placed on two supports, separated by a distance determined based on the diameter of the screw, per Table 1 "Length Between Nail Bearing Points" of ASTM F1575-03. The screw was arranged, so that the transition zone between shank and thread was as close as possible to the midpoint between the bearing points, with the load applied at the transition point, or in the threads. The specimen was loaded at a maximum constant rate of 0.25 inches per minute. The load deformation curve was used to determine the 5% offset yield load, which was used to calculate the bending yield strength of the specimen (F_{yb}). A minimum of 10 specimens were tested. A photograph of a tested specimen can be seen in Figure 1.

Shear and Tensile Strength

Shear and tensile testing was conducted in accordance with ICC/ES AC233 Section 4.1.1 "Shear and Tensile Strength" and also with AISI S904-08 "Standard Test Methods for Determining the Tensile and Shear Strength of Screws". A minimum of 10 fasteners were tested, however testing continued until precision of 5 percent at a 95 percent confidence interval was achieved, which was determined in accordance with ASTM D2915-10 "Practice for Sampling and Data-Analysis for Structural Wood and Wood-Based Products".

Tensile testing was conducted in accordance with AISI S904-08 Section 4.1 "Tensile Tests". The head and threads were gripped by the test machine, and separated at a rate of 0.1 inches per minute, or at a load rate of 500 pounds per minute, whichever was greater. The maximum load was recorded as the tensile strength of the screw. A photograph of a tested specimen can be seen in Figure 2.

Shear testing was conducted in accordance with AISI S904-08 Section 4.3 "Single Shear Tests". The specimen was tested using steel plates of sufficient thickness to preclude bearing failure and to ensure failure through the fully-threaded section. The plates created a single-lap joint connected with one fastener, and allowed for central loading across the lap joint. The plates were pulled apart at 0.1 inches per minute, or 500 pounds per minute, whichever was greater. The maximum load was recorded as the shear strength of the screw. A photograph of a tested specimen can be seen in Figure 3.

Withdrawal

Withdrawal Load testing was conducted in accordance with ICC/ES AC233 Section 4.2.3 "Withdrawal Load Test" and ASTM D1761-06 "Standard Test Method for Mechanical Fasteners in Wood" Sections 1-12 on "Nail, Staple, or Screw Withdrawal Test". Specific gravity and Moisture Content were determined as specified in the Test Methods section of this report, under the sub-headings Specific Gravity, and Moisture Content. Specimens were prepared in accordance with ASTM D1761-06 Section 8.2.3; sections of 4 x 4 nominal boards were cut, and a screw was installed near the middle, so that the minimum end and edge distances were maintained. Each screw was installed into the wood with an electric drill, with no pre-drilled lead hole, so that the threaded portion of the specimen was completely embedded into the wood, but the knurled shoulder was not. The wood was then placed into a square tube with a 3 inch diameter hole cut into the top, so that the screw head was protruding upwards through the hole. The head of the screw was then placed into a fastener pulling fixture, and pulled on at 0.1 in/min ± 25%. The maximum load was recorded for each test. A photograph of the test setup can be seen in Figure 4.

Head Pull-Through

Fastener head pull-through testing was conducted in accordance with ICC/ES AC233 Section 4.2.5 "Pull-through Test" and ASTM D1037-12 "Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Pales Materials" Section 15 "Nail Head Pull-Through". Specific gravity and Moisture Content were determined as specified in the Test Methods section of this report, under the sub-headings Specific Gravity, and Moisture Content. Sections of wood were cut at 3/4" thickness x 3-1/2" width x 6" length. A lead hole was drilled through the center of each wood member, with diameter equal to 70 percent of the root diameter of the test specimen. The specimen was then installed into the wood member, so that the head was flush with the surface of the wood, and all of the threads were exposed through the back. The wood was placed in a square tube with a three inch diameter hole cut out, and the threads on the fastener extended up through the hole, and were gripped by mechanical wedge grips on the test machine. A spacer with 1-1/2 inch diameter was placed between the wood and the square tube. The fastener head was then pulled through the wood at approximately 0.09 inches per minute. A photograph of the test setup can be seen in Figure 5.

Lateral Single Shear (Wood to Wood Connections)

Lateral shear testing was conducted in accordance with ICC/ES AC233 Section 4.2.4 "Lateral Load Testing" and ASTM D1761-12 "Standard Test Method for Mechanical Fasteners in Wood" Sections 13 – 20. Specific gravity and Moisture Content were determined as specified in the Test Methods section of this report, under the sub-headings Specific Gravity, and Moisture Content. A connection was created using the wood of the same specific gravity for the side member and main member, using the side member thickness and penetration shown in the "Lateral Load Tests" table in the Summary of Test Results section above. These thicknesses were achieved by buying wood with the correct thickness, planing or ripping to the correct thickness, or by gluing boards together (only for the main member). A pilot hole was drilled through the side member, with a diameter equal to 90% of the shank diameter of the screw to be tested. A pilot hole was also drilled to a depth of 1-5/8 inches into the main member with diameter equal to 70% of the root diameter of the test specimen. A friction reducing barrier was placed between the main and side members to minimize friction. The specimen was then installed using an electric drill, so that the head was flush with the surface of the side member.

Testing conducted parallel to the grain was performed in tension (as described in ASTM D1761-12). The screws were installed at 15 diameters maximum from the end of the wood side and main members. The wood specimens were pulled apart at approximately 0.1 inches per minute. The maximum load was reported. A minimum of 15 specimens were tested. A photograph of the test setup can be seen in Figure 6.

Testing conducted perpendicular to the grain was performed using a modified test setup that was performed in compression instead of tension. The fastener was installed approximately 1.5-2 inches from the edge, and was loaded away from the edge. The assembly was then loaded at approximately 0.1 inches per minute. The reported loads were taken from the first drop in load, or the ultimate load, as appropriate. Appendix 1 has detailed information regarding the setup, including a comparison data set taken parallel to the grain using sample CTX-381000 in tension and in compression. A photograph of the test setup can be seen in Figure 7.

Wood Members

All test series in wood members were performed in either 0.42 or 0.55 specific gravity. Southern Yellow Pine was used for the 0.55 Specific Gravity, which is its nominal value. Douglas Fir was used for tests with 0.42 specific gravity, the NDS reports the specific gravity of Douglas Fir to be 0.46. The average value of specific gravity for each set had to fall within 10 percent of the specified specific gravity (0.42 or 0.55) otherwise the wood was discarded. The average moisture content at test time was between 10 – 14 percent. Moisture content and specific gravity testing was conducted as specified below.

Specific Gravity

Specific gravity testing was conducted on each board in accordance with ICC/ES AC233 Section 4.2.1 "Wood Test Member Requirements" and ASTM D2395-07a "Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials" Section 7 "Test Method A – Volume by Measurement". Two sections were taken from each board that was used as a test member. The volume of each section was found by measuring the dimensions with a digital caliper. The section was then weighed and oven-dried at $103 \pm 2^{\circ}$ C until the mass was no longer decreasing. Specific gravity was reported to the nearest 0.01 as an average of all test specimens in each set of tests. The average specific gravity of each set can be found, along with the results of each test, in the "Test Data" section of this report (see pages 8-32).

Moisture Content

Moisture content testing was conducted on each board in accordance with ICC/ES AC233 Section 4.2.1 "Wood Test Member Requirements" and ASTM D4442-07 "Direct Moisture Content Measurement of Wood and Wood-Based Materials" Section 6 "Method B – Oven-Drying (Secondary)". Two sections were taken from each board that was used as a test member. The mass of each section was found by measurement with a digital scale, capable of measuring 0.1% of the nominal oven-dry mass of each specimen. The section was then oven-dried at $103 \pm 2^{\circ}$ C until the mass was no longer decreasing. Moisture content was reported to the nearest 0.1% as an average of all test specimens at the time of testing. The average moisture content of each set can be found, along with the results of each test, in the "Test Data" section of this report (see pages 8-32).

TEST DATA

Bending Yield Testing

Sample Identification (Size)	Specimen	Root Diameter, in	Thread Length, in	Peak Load, lbf	P, Ibf	F _{yb} , psi
	1	0.147	2	256	240	144254
	2	0.147	2	274	256	153871
	3	0.146	2	253	237	142451
	4	0.146	2	252	213	128026
CTX-14400	5	0.147	2	251	236	141850
(1/4" x 4")	6	0.147	2	257	240	144254
	7	0.147	2	235	220	132233
	8	0.147	2	255	240	144254
	9	0.147	2	246	233	140047
	10	0.147	2	254	237	142451
Average	•			253	235	141369
Standard Devia	ation					7048
cov						5.0%
	1	0.181	2	401	374	154242
	2	0.181	2	395	366	153196
	3	0.182	2	374	353	147754
	4	0.182	2	374	351	146917
CTX-516400	5	0.182	2	374	356	149010
(5/16" x 4")	6	0.181	2	376	346	144824
	7	0.182	2	409	393	164497
	8	0.182	2	382	363	151940
	9	0.181	2	398	369	154451
	10	0.182	2	382	357	149428
Average		002	_	387	363	151626
Standard Devia	ation					5559
cov						3.7%
	1	0.209	4	506	468	160237
	2	0.210	4	556	506	175578
	3	0.209	4	508	483	163187
	4	0.212	4	519	501	171536
CTX-381000	5	0.210	4	512	488	167085
(3/8" x 10")	6	0.209	4	527	510	174617
	7	0.211	4	529	502	171878
	8	0.211	4	526	507	173590
	9	0.210	4	550	527	182865
	10	0.210	4	494	474	164475
Average		-		523	497	170505
Standard Devia	ation					6790
COV						4.0%

Tensile and Shear Testing

Sample	Specimen	Shear Diameter (in)	Shear Load (lbf)	shear stress (psi)	Tensile Diameter (in)	Tensile Load (lbf)	Tensile stress (psi)
	1		2141	97763		2,776	170453
	2		2144	97900		2,787	171128
	3		2188	99909		2,771	170146
	4		2189	99954		2,889	177391
	5	0.167	2155	98402	0.144	2,761	169532
	6	0.167	2183	99680	0.144	2,813	172725
CTX-14400	7		2188	99909		2,784	170944
	8		2171	99132		2,749	168795
	9		2176	99361		2,769	170023
	10		2178	99452		2,826	173523
	А	verage	2171	99146		2793	171466
	Standa	ard Deviation	18	834		41	2517
		COV	0.8%	0.8%		1.5%	1.5%
	1		3,097	96,781		4,537	178293
	2		3,050	95,313		4,522	177703
	3		3,036	94,875		4,282	168272
	4		3,033	94,871		4,475	175856
	5	1	3,139	98,094	0.400	4,522	177703
	6	0.202	3,007	93,969	0.180	4,477	175935
CTX-516400	7		3,047	95,219		4,476	175896
	8		3,121	97,531		4,266	167643
	9		2,982	93,188		4,296	168822
	10		3,055	95,469		4,443	174599
	А	verage	3057	95531		4430	174072
	Standa	ard Deviation	49	1530		106	4176
		COV	1.6%	1.6%		2.4%	2.4%
	1		3,676	93,299		5,876	166464
	2		3,683	93,477		5,493	155614
	3		3,891	98,756		5,468	154906
	4]	3,571	90,635]	5,508	156039
	5	0.004	3,683	93,477	0.040	5,511	156124
	6	0.224	3,828	97,157	0.212	5,409	153234
CTX-381000	7]	3,768	3,768 95,635]	5,670	160628
	8]	3,780	95,939]	5,539	156917
	9		3,640	92,386	1	5,529	156634
	10]	3,677	93,325		5,528	156605
	А	verage	3,720	94,409		5,553	157,316
	Standa	ard Deviation	95	2,421		131	3,715
		COV	2.6%	2.6%		2.4%	2.4%

Withdrawal Testing

Witharawar rooting			
Withdrawal, 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	
	1	1511	
	2	1572	
	3	1665	
	4	1433	
	5	1482	
	6	1502	
	7	1625	
CTX-14400	8	1605	
C1X-14400	9	1565	
	10	1615	
	11	1529	
	12	1495	
	13	1732	
	14	1526	
	15	1541	
	16	1594	
Average		1562	
Standard Deviation		76	
COV		4.8%	
Average Speci	fic Gravity	0.42	
Average Moistu	ire Content	11.0%	

Withdrawal, 0.42 Specific Gravity				
Sample ID	Specimen	Load (lbf)		
	1	1282		
	2	1366		
	3	1422		
	4	1616		
	5	1648		
	6	1407		
	7	1365		
	8	1365		
	9	1362		
	10	1335		
	11	1407		
	12	1333		
	13	1271		
	14	1285		
	15	1417		
	16	1475		
	17	1868		
	18	1307		
	19	1367		
	20	1238		
CTX-516400	21	1331		
	22	1885		
	23	1406		
	24	1383		
	25	1317		
	26	1301		
	27	1442		
	28	1334		
	29	1316		
	30	1376		
	31	1331		
	32	1327		
	33	1415		
	34	1487		
	35	1392		
	36	1445		
	37	1500		
	38	1472		
	39	1527		
	40	1460		
Averag		1415		
Standard De		138		
COV		9.8%		
	Average Specific Gravity			
		0.38		
Average Moisture Content 13.9%				

Withdrawal, 0.42 Specific Gravity				
Sample ID	Specimen	Load (lbf)		
	1	3710		
	2	3535		
	3	4401		
	4	3918		
	5	3939		
	6	4102		
	7	3587		
	8	3428		
	9	3544		
	10	3538		
	11	4117		
	12	3837		
	13	3748		
	14	3393		
	15	3652		
	16	4271		
	17	3966		
	18	3491		
CTX-381000	19	3791		
	20	3744		
	21	3821		
	22	3287		
	23	3805		
	24	2696		
	25	3563		
	26	2793		
	27	2650		
	28	2753		
	29	2609		
	30	2850		
	31	2601		
	32	3133		
	33	2841		
	34	3015		
	35	2730		
	36	3082		
	37	2507		
	38	2668		
	39	3751		
	40	2846		
Averag		3393		
Standard De		534		
COV		15.7%		
Average Speci		0.42		
Average Moistu	re Content	13.8%		

Withdrawal, 0.55 Specific Gravity				
Sample ID	Specimen	Load (lbf)		
	1	1600		
	2	1769		
	3	1716		
	4	1753		
	5	1434		
	6	1720		
	7	1718		
	8	1705		
	9	1657		
	10	1906		
	11	1555		
	12 13	1873 1812		
	14	1739		
	15	1767		
	16	1644		
	17	1459		
	18	1443		
	19	1560		
	20	1595		
CTX-14400	21	1644		
	22	1567		
	23	1778		
	24	1730		
	25	1733		
	26	1527		
	27	1640		
	28	1637		
	29	2054		
	30	1799		
	31	1870		
	32	1969		
	33	1583		
	34	1706		
	35	1517		
	36 37	1565 1687		
	38	1701		
	39	2052		
	40	1821		
Aver		1700		
Standard I		149		
	COV			
Average Spe		8.8% 0.54		
Average Mois		13.1%		

Sample ID Specimen Load (lbf) 1 1583 2 2012 3 1670 4 1659 5 1778 6 2105 7 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800	Withdrawal, 0.55 Specific Gravity		
CTX-516400 2 2012 3 1670 4 1659 5 1778 6 2105 7 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		1	
TTX-516400 3		1	1583
CTX-516400 A 1659 5 1778 6 2105 7 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		2	2012
5 1778 6 2105 7 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		3	1670
CTX-516400 6 2105 7 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		4	1659
T 1732 8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		5	1778
8 1945 9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		6	2105
9 1930 10 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		7	1732
TO 1681 11 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		8	1945
TI 1765 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		9	1930
CTX-516400 12 1636 13 1850 14 1597 15 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 24 1888 25 1839 26 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		10	1681
CTX-516400 13 1850 14 1597 15 1673 16 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 24 1888 25 1839 26 27 1730 28 1594 29 1877 30 208 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		11	1765
CTX-516400 14		12	1636
TIS 1673 16 1636 17 1707 18 1742 19 1861 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		13	1850
CTX-516400 16		14	1597
CTX-516400 17		15	1673
CTX-516400 18		16	1636
CTX-516400 19		17	1707
CTX-516400 20 2091 21 2095 22 2134 23 2123 24 1888 25 1839 26 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		18	1742
21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		19	1861
21 2095 22 2134 23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736	CTV 546400	20	2091
23 2123 24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736	C1X-516400	21	2095
24 1888 25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		22	2134
25 1839 26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		23	2123
26 2078 27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		24	1888
27 1730 28 1594 29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		25	1839
28		26	2078
29 1877 30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		27	1730
30 2067 31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		28	1594
31 1764 32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		29	1877
32 1906 33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		30	2067
33 1942 34 1967 35 1749 36 1885 37 1800 38 1736		31	1764
34 1967 35 1749 36 1885 37 1800 38 1736		32	1906
35 1749 36 1885 37 1800 38 1736		33	1942
36 1885 37 1800 38 1736		34	1967
37 1800 38 1736		35	1749
38 1736		36	1885
		37	1800
30 1900		38	1736
39 1090		39	1890
40 1682	40		1682
Average 1835	Average		1835
Standard Deviation 165			
COV 9.0%	COV		9.0%
Average Specific Gravity 0.53	Average Specific Gravity		0.53
Average Moisture Content 11.3%	Average Mois	ture Content	11.3%

Withdrawal, 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	4504
	2	3629
	3	4503
	4	4052
	5	4376
	6	4497
	7	3862
	8	3937
	9	3347
	10	4081
	11	3537
	12	3432
	13	4685
	14	4431
	15	4535
	16	3753
	17	3841
	18	4313
	19	3522
CTV 201000	20	3556
CTX-381000	21	3455
	22	3490
	23	3421
	24	3244
	25	3394
	26	3947
	27	3449
	28	3847
	29	4962
	30	3908
	31	4876
	32	3483
	33	3473
	34	4680
	35	3799
	36	3873
	37	4302
	38	3996
	39	3933
	40	
Average		3952
Standard D	eviation	468
COV		11.8%
Average Specific Gravity		0.51
Average Moisture Content		11.4%

Head Pull Through Testing

Head Pull Through, 0.42 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	1558
	2	1694
	3	1209
	4	1287
	5	1666
	6	1154
	7	1893
	8	1269
	9	1583
	10	1257
	11	1396
	12	1277
	13	1314
	14	1313
	15	1342
	16	1477
	17	1595
	18	1585
	19	1503
CTX-14400	20	1512
012/14400	21	1534
	22	1653
	23	1496
	24	1459
	25	1633
	26	1651
	27	1915
	28	1857
	29	1495
	30	1351
	31	1406
	32	1312
	33	1508
	34	1328
	35	1398
	36	1389
	37	1438
	38	1263
	39	1495
40		1398 1472
	Average	
	Standard Deviation	
COV		12.3%
Average Specific Gravity		0.44
Average Moisture Content		10.3%

Head Pull Through, 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	1910
	2	1818
	3	1554
	4	2008
	5	1293
	6	1947
	7	1604
	8	1728
	9	1764
	10	2002
	11	1703
	12	1929
	13	1660
	14	1496
	15	1947
	16	1872
	17	2113
	18	1891
	19	1962
	20	1952
CTX-14400	21	1805
		2070
	22	1556
	23	2123
	24	1589
	25	2043
	26	2136
	27	1618
	28	1657
	29	
	30	2061
	31	1731
	32	1793
	33	1933
	34	1708
	35	1612
	36	1651
	37	1693
	38	1500
	39	1628 1460
	40	
Average		1788 209
Standard I	Standard Deviation	
COV		11.7%
Average Specific Gravity		0.54
Average Moisture Content		11.6%

Head Pull Through, 0.42 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	1287
	2	1666
	3	1154
	4	1287
	5	1666
	6	1154
	7	1269
	8	1583
	9	1257
	10	1396
	11	1277
	12	1314
	13	1313
	14	1342
	15	1477
	16	1595
	17	1585
	18	1503
	19	1512
OTV 540400	20	1534
CTX-516400	21	1653
	22	1496
	23	1459
	24	1633
	25	1651
	26	1857
	27	1495
	28	1735
	29	1685
	30	1631
	31	1837
	32	1917
	33	1257
	34	1390
	35	1347
	36	1147
	37	1657
	38	1463
	39	1584
	40	1622
Average		1492
Standard De	-	198
COV		13.3%
Average Specific Gravity		0.44
Average Moisture Content		10.2%

Head Pull Through, 0.55 Specifi		ecific Gravity
Sample ID	Specimen	Load (lbf)
	1	1544
	2	1721
	3	2233
	4	1942
	5	1809
	6	2531
	7	2086
	8	1957
	9	2218
	10	2213
	11	994
	12	1835
	13	2346
	14	2182
	15	2153
	16	2291
	17	2209
	18	2700
	19	2437
CTX-516400	20	2106
01X 310400	21	2091
	22	2087
	23	2050
	24	1947
	25	1917
	26	1877
	27	1572
	28	1895
	29	1960
	30	1939
	31	2094
	32	2104
	33	1915
	34	2064
	35	2081
	36	1987
	37	1873
	38	1995
	39	1709
	40	2013
Avera	Average	
Standard Deviation		285
COV		14.1%
Average Specific Gravity		0.55
Average Moisture Content		12.1%

Head Pull Through, 0.42 Specific Gravity		
Sample ID	Specimen	Load (lbf)
·	1	1787
	2	1882
	3	1868
	4	2046
	5	1656
	6	2144
	7	1698
	8	1646
	9	1672
	10	1696
	11	2025
	12	2031
	13	1837
	14	1808
	15	2061
	16	1909
	17	1570
	18	1889
	19	1675
CTX-381000	20	1893
	21	1681
	22	1459
	23	1400
	24	2046
	25	2400
	26	1892
	27	1588
	28	1904
	29	1760
	30	1672
	31	2003
	32	1795
	33	1912
	34	1959
	35	1829
	36	1750
	37	1747
	38	1717
	39	1648 1769
40		1818
Averag		192
	Standard Deviation	
COV		10.6%
Average Speci		0.41
Average Moisture Content		10.7%

Head Pull Through, 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	2364
	2	2527
	3	1952
	4	2042
	5	2086
	6	2649
	7	1921
	8	2145
	9	1551
	10	2663
	11	2918
	12	2577
	13	2742
	14	2627
	15	2154
	16	1739
	17	1833
	18	2546
	19	2974
OTV 004000	20	2441
CTX-381000	21	2340
	22	2526
	23	2455
	24	2609
	25	2804
	26	2760
	27	2717
	28	3080
	29	2644
	30	2603
	31	3106
	32	2867
	33	2754
	34	2678
	35	2311
	36	1751
	37	1661
	38	1475
	39	1690
40		2927
•		2405
Average Standard Deviation		447
COV		18.6%
Average Specific Gravity		0.54
Average Moisture Content		11.1%

Head Pull Through, 0.42 Specific Gravity		
Sample ID	Specimen	Load (lbf)
<u> </u>	1	854
	2	790
	3	768
	4	798
	5	866
	6	886
	7	812
	8	786
	9	671
	10	851
	11	961
	12	1133
	13	888
	14	858
	15	998
	16	1111
	17	1241
	18	1287
	19	984
BL 14400	20	1058
BL 14400	21	1214
	22	1126
	23	1029
	24	1270
	25	1226
	26	1030
	27	1119
	28	1208
	29	1211
	30	1092
	31	1214
	32	1282
	33	1085
	34	1052
	35	1049
	36	1050
	37	913
	38	897
	39	828
	40	968
Average		1012
Standard D	eviation	167
COV		16.5
Average Specific Gravity		0.42
Average Moist	Average Moisture Content	

Head Pull Through, 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	1593
	2	1293
	3	1630
	4	1067
	5	1313
	6	1214
	7	1325
BL 14400	8	997
	9	1043
	10	966
	11	933
	12	1203
	13	992
	14	1144
	15	1195
Average		1194
Standard Deviation		212
COV		17.8%
Average Specific Gravity		0.55
Average Moisture Content		12.2%

Head Pull Through, 0.42 Specific Gravity		
Sample ID	Specimen	Load (lbf)
·	1	1465
	2	1401
	3	1400
	4	1294
	5	1218
	6	1616
	7	1398
	8	1382
	9	1451
	10	1390
	11	1216
	12	1450
	13	1389
	14	1635
	15	1526
	16	1097
	17	1160
	18	1260
	19	1145
01 00500	20	1152
GL 38500	21	1647
	22	1146
	23	1059
	24	912
	25	1046
	26	936
	27	1104
	28	1037
	29	858
	30	969
	31	1011
	32	952
	33	1954
	34	1702
	35	1859
	36	1951
	37	1652
	38	1964
	39	2250
	40	1411
Average		1362
Standard De		333
COV		24.5%
Average Specific Gravity		0.42
Average Moistu		10.4%

Head Pull Through, 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	1465
	2	1350
	3	1202
	4	1343
	5	1868
	6	1513
	7	1615
GL 38500	8	1843
	9	1730
	10	1820
	11	2131
	12	1485
	13	1501
	14	1605
	15	1786
Average		1617
Standard Deviation		246
COV		15.2%
Average Specific Gravity		0.52
Average Mo	oisture Content	13.6%

Lateral Load Testing

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type	
	1	1032	head pull through	
	2	715	side member split	
	3	855	head pull through	
	4	696	head pull through	
	5	653	side member split	
	6	764	head pull through	
	7	793	head pull through	
CTX-14250	8	802	head pull through	
GTX-14250	9	763	head pull through	
	10	822	head pull through	
	11	760	head pull through	
	12	860	head pull through	
	13	689	head pull through	
	14	616	side member split	
	15	617	head pull through	
	16	565	side member split	
Avei	rage	750		
Standard Deviation		115		
CC	COV			
Average Specific Gravity		0.42		
Average Moisture Content		11.9%		

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	832	head pull through
	2	1121	head pull through
	3	739	head pull through
	4	908	head pull through
	5	847	head pull through
	6	919	head pull through
	7	990	head pull through
CTX-14250	8	953	head pull through
C1X-14230	9	960	head pull through
	10	937	head pull through
	11	868	head pull through
	12	791	head pull through
	13	882	head pull through
	14	875	head pull through
	15	820	head pull through
	16	889	head pull through
Aver	age	896	
Standard Deviation		89	
cov		9.9%	
Average Specific Gravity		0.55	
Average Moisture Content		12.3%	

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	630	head pull through
	2	606	head pull through
	3	709	head pull through
	4	516	head pull through
	5	646	head pull through
	6	667	head pull through
	7	646	head pull through
CTX-14250	8	687	head pull through
C1X-14230	9	608	head pull through
	10	601	head pull through
	11	550	head pull through
	12	632	head pull through
	13	648	head pull through
	14	583	head pull through
	15	681	head pull through
	16	589	head pull through
Ave	rage	625	
Standard Deviation		51	
C	COV		
Average Specific Gravity		0.41	
Average Moisture Content		10.3%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	574	head pull through
	2	775	head pull through
	3	668	head pull through
	4	761	head pull through
	5	700	head pull through
	6	964	head pull through
	7	739	head pull through
CTX-14250	8	662	head pull through
C1X-14250	9	759	head pull through
	10	768	head pull through
	11	814	head pull through
	12	794	head pull through
	13	812	head pull through
	14	804	head pull through
	15	969	head pull through
	16	724	head pull through
Avei	rage	768	
Standard Deviation		100	
COV		13.1%	
Average Specific Gravity		0.54	
Average Moisture Content		13.6%	

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	843	head pull through
	2	847	head pull through
	3	811	head pull through
	4	924	head pull through
	5	1010	head pull through
	6	745	head pull through
	7	1013	head pull through
CTX-14400	8	931	head pull through
	9	976	head pull through
	10	964	head pull through
	11	860	head pull through
	12	824	head pull through
	13	919	head pull through
	14	1056	head pull through
	15	924	head pull through
Aver	age	910	
Standard Deviation		87	
cov		9.5%	
Average Specific Gravity		0.42	
Average Moisture Content		12.7%	

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1240	head pull through
	2	896	head pull through
	3	1066	head pull through
	4	1035	head pull through
	5	1030	head pull through
	6	1064	head pull through
	7	1149	head pull through
CTX-14400	8	1014	head pull through
	9	1114	head pull through
	10	1125	head pull through
	11	1141	head pull through
	12	1387	head pull through
	13	990	head pull through
	14	891	head pull through
	15	959	head pull through
Aver	age	1073	
Standard Deviation		129	
COV		12.0%	
Average Specific Gravity		0.53	
Average Moisture Content		13.4%	

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
-	1	895	head pull through
	2	895	head pull through
	3	951	head pull through
	4	930	head pull through
	5	929	head pull through
	6	955	head pull through
	7	955	head pull through
CTX-14400	8	963	head pull through
C1X-14400	9	1099	head pull through
	10	1142	head pull through
	11	825	head pull through
	12	1028	head pull through
	13	788	head pull through
	14	898	head pull through
	15	943	head pull through
	16	783	head pull through
Aver	age	936	
Standard Deviation		97	
cov		10.4%	
Average Specific Gravity		0.42	
Average Moisture Content		11.5%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1112	head pull through
	2	987	head pull through
	3	1117	head pull through
	4	914	head pull through
	5	1103	head pull through
	6	970	head pull through
	7	1196	head pull through
CTX-14400	8	1065	head pull through
C1X-14400	9	839	screw fracture
	10	909	head pull through
	11	950	head pull through
	12	1235	head pull through
	13	1182	head pull through
	14	1050	head pull through
	15	901	head pull through
	16	1216	head pull through
Aver	age	1047	
Standard Deviation		126	
cov		12.0%	
Average Spe	Average Specific Gravity		
Average Moisture Content		13.3%	

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Failure Type	
	1	1286	Withdrawal
	2	1316	Withdrawal
	3	1093	Withdrawal
	4	1236	Withdrawal
	5	1184	Withdrawal
	6	1194	Withdrawal
	7	1239	Withdrawal
CTX-14600	8	1110	Withdrawal
C1X-14000	9	1304	Withdrawal
	10	1109	Withdrawal
	11	1263	Withdrawal
	12	1044	Withdrawal
	13	1292	Withdrawal
	14	1130	Withdrawal
	15	1219	Withdrawal
	16	1194	Withdrawal
Average		1201	
Standard Deviation		84	
COV		7.0%	
Average Specific Gravity		0.41	
Average Moisture Content		10.9%	

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1682	Withdrawal
	2	1651	Withdrawal
	3	1759	Withdrawal
	4	1696	Withdrawal
	5	1987	Withdrawal
	6	1830	Withdrawal
	7	1585	Withdrawal
CTX-14600	8	1860	Withdrawal
C1X-14000	9	1425	Withdrawal
	10	1777	Withdrawal
	11	1495	Withdrawal
	12	1756	Withdrawal
	13	1588	Withdrawal
	14	1617	Withdrawal
	15	1556	Withdrawal
	16	1513	Withdrawal
Aver	Average		
Standard Deviation		149	
COV		8.9%	
Average Specific Gravity		0.52	
Average Moisture Content		11.2%	

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	987	Withdrawal
	2	845	Withdrawal
	3	1209	Withdrawal
	4	1046	Withdrawal
	5	1070	Withdrawal
	6	1013	Withdrawal
	7	1249	Withdrawal
CTX-14600	8	1176	Withdrawal
C1X-14000	9	1150	Withdrawal
	10	1009	Withdrawal
	11	1254	Withdrawal
	12	1415	Withdrawal
	13	1078	Withdrawal
	14	987	Withdrawal
	15	1134	Withdrawal
	16	1100	Withdrawal
Averaç	је	1108	
Standard Deviation		136	
COV		12.3%	
Average Speci	Average Specific Gravity		
Average Moisture Content		11.2%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type	
	1	1461	Withdrawal	
	2	1588	Withdrawal	
	3	1118	Withdrawal	
	4	1181	Withdrawal	
	5	991	Withdrawal	
	6	1035	Withdrawal	
	7	1014	Withdrawal	
CTX-14600	8	1061	Withdrawal	
	9	1195	Withdrawal	
	10	1038	Withdrawal	
	11	1249	Withdrawal	
	12	1148	Withdrawal	
	13	1142	Withdrawal	
	14	1506	Withdrawal	
	15	1309	Withdrawal	
Avera	ige	1202		
Standard Deviation		187		
cov		15.6%		
Average Spec	Average Specific Gravity			
Average Moisture Content		12.8%		

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	776	head pull through
	2	622	head pull through
	3	701	head pull through
	4	689	head pull through
	5	733	head pull through
	6	648	head pull through
	7	736	head pull through
	8	639	head pull through
	9	816	head pull through
	10	668	head pull through
	11	664	head pull through
CTX-516300	12	751	head pull through
C1X-516300	13	856	head pull through
	14	865	head pull through
	15	875	head pull through
	16	767	head pull through
	17	738	head pull through
	18	762	head pull through
	19	794	head pull through
	20	889	head pull through
	21	769	head pull through
	22	806	head pull through
	23	696	head pull through
	24	804	head pull through
Avera	Average		
Standard I	Standard Deviation		
СО	cov		
Average Specific Gravity		0.38	
Average Mois	ture Content	11.1%	

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1160	head pull through
	2	1146	head pull through
	3	1089	head pull through
	4	1151	head pull through
	5	1158	head pull through
	6	1111	head pull through
	7	1093	head pull through
CTX-516300	8	1278	head pull through
C1X-310300	9	968	head pull through
	10	1081	head pull through
	11	1239	head pull through
	12	1199	head pull through
	13	1166	head pull through
	14	1126	head pull through
	15	1192	head pull through
	16	954	head pull through
Avera	age	1132	
Standard [Standard Deviation		
cov		7.5%	
Average Specific Gravity		0.53	
Average Moist	ture Content	12.5%	

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	563	head pull through
	2	704	head pull through
	3	751	head pull through
	4	668	head pull through
	5	532	head pull through
	6	676	head pull through
	7	639	head pull through
CTX-516300	8	723	head pull through
01X-310300	9	598	head pull through
	10	737	head pull through
	11	560	head pull through
	12	624	head pull through
	13	676	head pull through
	14	691	head pull through
	15	696	head pull through
	16	732	head pull through
Avera	ge	661	
Standard D	Standard Deviation		
CO	COV		
Average Spec	Average Specific Gravity		
Average Moisture Content		12.0%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1005	head pull through
	2	930	head pull through
	3	1033	head pull through
	4	845	head pull through
	5	803	head pull through
	6	858	head pull through
	7	1236	withdrawal
CTX-516300	8	854	head pull through
	9	735	head pull through
	10	1062	head pull through
	11	956	head pull through
	12	740	head pull through
	13	809	head pull through
	14	739	head pull through
	15	878	head pull through
Avera	ge	899	
Standard Deviation		140	
COV		15.6%	
Average Specific Gravity		0.53	
Average Moistu	ure Content	11.2%	

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1088	head pull through
	2	1150	head pull through
	3	1184	head pull through
	4	1418	head pull through
	5	1238	head pull through
	6	1149	head pull through
	7	1559	head pull through
CTX-516400	8	1562	head pull through
C1A-310400	9	1081	head pull through
	10	1104	head pull through
	11	1171	head pull through
	12	950	side member split
	13	1269	head pull through
	14	1147	head pull through
	15	1275	head pull through
	16	977	head pull through
Avera	Average		
Standard Deviation		178	
cov		14.7%	
Average Specific Gravity		0.42	
Average Moisture Content		11.8%	

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1604	head pull through
	2	1360	head pull through
	3	1232	head pull through
	4	1823	head pull through
	5	1439	head pull through
	6	1455	head pull through
	7	1082	head pull through
CTX-516400	8	1780	head pull through
C1X-310400	9	1384	head pull through
	10	1105	head pull through
	11	1440	head pull through
	12	1215	head pull through
	13	1324	head pull through
	14	1358	head pull through
	15	1365	head pull through
	16	1442	head pull through
Avera	age	1401	
Standard Deviation		206	
COV		14.7%	
Average Specific Gravity		0.51	
Average Moist	ure Content	12.3%	

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1611	head pull through
	2	1214	head pull through
	3	1192	head pull through
	4	1308	head pull through
	5	974	head pull through
	6	1223	head pull through
	7	1152	head pull through
	8	1520	head pull through
CTX-516400	9	1342	head pull through
	10	911	head pull through
	11	1146	head pull through
	12	1274	head pull through
	13	1206	head pull through
	14	1316	head pull through
	15	1077	head pull through
	16	1127	head pull through
	17	1086	head pull through
Avera	ge	1216	
Standard D	eviation	175	
CO/	1	14.4%	
Average Spec	Average Specific Gravity		
Average Moisture Content		13.0%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1357	head pull through
	2	1124	head pull through
	3	1366	head pull through
	4	1239	head pull through
	5	1245	head pull through
	6	1297	head pull through
	7	1352	head pull through
CTX-516400	8	1175	head pull through
	9	1123	head pull through
	10	1801	head pull through
	11	1269	head pull through
	12	1381	head pull through
	13	1351	head pull through
	14	1097	head pull through
	15	1229	head pull through
Avera	age	1294	
Standard Deviation		169	
CO	cov		
Average Spec	Average Specific Gravity		
Average Moisture Content		13.0%	

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1243	head pull through
	2	1381	head pull through
	3	1445	head pull through
	4	1295	head pull through
	5	1120	head pull through
	6	1224	head pull through
	7	1392	head pull through
CTX-516600	8	1470	head pull through
C1X-310000	9	1476	head pull through
	10	1391	head pull through
	11	1262	head pull through
	12	1058	head pull through
	13	1301	head pull through
	14	1226	head pull through
	15	1162	head pull through
	16	1178	head pull through
Avera	age	1289	
Standard Deviation		127	
СО	cov		
Average Specific Gravity		0.41	
Average Moisture Content		12.0%	

	. Grain in 0.0	5 Specific Gravity
Specimen	Load (lbf)	Failure Type
1	1513	head pull through
2	1394	head pull through
3	1413	head pull through
4	1534	head pull through
5	1318	head pull through
6	1400	head pull through
7	1392	head pull through
8	1234	head pull through
9	1478	head pull through
10	1368	head pull through
11	1793	head pull through
12	1912	head pull through
13	1488	head pull through
14	1608	head pull through
15	1571	head pull through
16	1302	head pull through
Average		
Standard Deviation		
1	11.9%	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ge	1 1513 2 1394 3 1413 4 1534 5 1318 6 1400 7 1392 8 1234 9 1478 10 1368 11 1793 12 1912 13 1488 14 1608 15 1571 16 1302 ge 1482

11.1%

Average Moisture Content

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1148	head pull through
	2	1303	head pull through
	3	1573	head pull through
	4	1578	head pull through
	5	1143	head pull through
	6	1616	head pull through
	7	1466	head pull through
CTX-516600	8	947	head pull through
C1X-310000	9	1301	head pull through
	10	1049	head pull through
	11	1258	head pull through
	12	1365	head pull through
	13	1083	head pull through
	14	1351	head pull through
	15	1044	head pull through
	16	1443	head pull through
Avera	ge	1292	
Standard D	Standard Deviation		
COV	COV		
Average Spec	Average Specific Gravity		
Average Moisture Content		13.3%	

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity			
Sample ID	Specimen	Load (lbf)	Failure Type
	1	1338	head pull through
	2	1338	head pull through
	3	1071	head pull through
	4	937	head pull through
	5	1113	head pull through
	6	1366	head pull through
	7	1386	head pull through
CTX-516600	8	1830	head pull through
C1X-310000	9	987	head pull through
	10	1244	head pull through
	11	1521	head pull through
	12	1446	head pull through
	13	1655	head pull through
	14	1324	head pull through
	15	1226	head pull through
	16	1089	head pull through
Avera	ge	1304	
Standard Deviation		240	
cov		18.4%	
Average Specific Gravity		0.50	
Average Moisture Content		12.9%	

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type	
	1	1491	head pull through	
	2	1653	head pull through	
	3	2310	head pull through	
	4	1774	head pull through	
	5	2406	head pull through	
	6	2084	head pull through	
	7	1911	head pull through	
CTX-38700	8	1812	head pull through	
C1X-30700	9	1913	head pull through	
	10	2096	head pull through	
	11	1574	head pull through	
	12	1640	head pull through	
	13	2285	head pull through	
	14	1928	head pull through	
	15	1892	head pull through	
	16	1988	head pull through	
Aver	age	1922		
Standard Deviation		267		
CC	OV	13.9%		
Average Specific Gravity		0.42		
Average Mois	ture Content	11.5%		

Lateral Load	Lateral Load, Parallel to the Grain in 0.55 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type		
	1	2461	head pull through		
	2	1637	head pull through		
	3	1910	head pull through		
	4	2018	head pull through		
	5	1924	head pull through		
	6	2198	head pull through		
	7	2579	head pull through		
CTX-38700	8	1969	head pull through		
	9	2436	head pull through		
	10	2446	head pull through		
	11	2546	head pull through		
	12	2583	head pull through		
	13	1930	head pull through		
	14	2085	head pull through		
	15	2215	head pull through		
Aver	age	2196			
Standard Deviation		298			
cov		13.6%			
Average Specific Gravity		0.53			
Average Moisture Content		11.3%			

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity					
Sample ID	Specimen	Load (lbf)	Failure Type		
	1	1153	head pull through		
	2	1259	head pull through		
	3	1396	head pull through		
	4	1157	head pull through		
	5	1257	head pull through		
	6	1097	head pull through		
	7	1565	head pull through		
CTX-38700	8	1229	head pull through		
C1X-30700	9	1364	head pull through		
	10	1167	head pull through		
	11	1772	head pull through		
	12	1561	head pull through		
	13	1155	head pull through		
	14	1454	head pull through		
	15	1455	head pull through		
	16	1186	head pull through		
Avera	ge	1327			
Standard Deviation		192			
cov		14.5%			
Average Specific Gravity		0.40			
Average Moist	ure Content	10.9%			

Lateral Load, F	Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity					
Sample ID	Sample ID Specimen		Failure Type			
	1	1664	head pull through			
	2	1430	head pull through			
	3	1735	head pull through			
	4	1107	head pull through			
	5	1260	head pull through			
	6	1498	head pull through			
	7	1652	head pull through			
CTX-38700	8	1623	head pull through			
C1X-30700	9	1163	head pull through			
	10	1556	head pull through			
	11	1136	head pull through			
	12	1327	head pull through			
	13	1556	head pull through			
	14	1566	head pull through			
	15	1104	head pull through			
	16	1517	head pull through			
Avera	ige	1431				
Standard Deviation		217				
cov		15.1%				
Average Specific Gravity		0.50				
Average Moisture Content		11.2%				

Lateral Load, Parallel to the Grain in 0.42 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type	
	1	2056	head pull through	
	2	2354	head pull through	
	3	2451	head pull through	
	4	2020	head pull through	
	5	2303	head pull through	
	6	2603	head pull through	
	7	2735	head pull through	
CTX-381000	8	2884	head pull through	
	9	2327	head pull through	
	10	2400	head pull through	
	11	2427	head pull through	
	12	1515	head pull through	
	13	2408	head pull through	
	14	2492	head pull through	
	15	2272	head pull through	
Avera	age	2350		
Standard Deviation		321		
cov		13.7%		
Average Specific Gravity		0.41		
Average Moist	ure Content	13.2%		

Lateral Load, Parallel to the Grain in 0.55 Specific Gravity				
Sample ID	Specimen	Load (lbf)	Failure Type	
	1	2335	head pull through	
	2	3359	head pull through	
	3	2670	head pull through	
	4	2611	head pull through	
	5	2846	head pull through	
	6	2628	head pull through	
	7	2306	head pull through	
CTX-381000	8	2746	head pull through	
	9	2377	head pull through	
	10	3304	head pull through	
	11	2986	head pull through	
	12	3344	head pull through	
	13	2910	head pull through	
	14	3078	head pull through	
	15	2573	head pull through	
Avera	age	2805		
Standard Deviation		355		
COV		12.7%		
Average Specific Gravity		0.53		
Average Moisture Content		12.9%		

Lateral Load, Perpendicular to the Grain in 0.42 Specific Gravity					
Sample ID	Specimen	Load (lbf)	Failure Type		
	1	1196	head pull through		
	2	1099	head pull through		
	3	1437	head pull through		
	4	1810	head pull through		
	5	1276	head pull through		
	6	1275	head pull through		
	7	1552	head pull through		
CTX-381000	8	1461	head pull through		
C1X-301000	9	1458	head pull through		
	10	1133	head pull through		
	11	1290	head pull through		
	12	1305	head pull through		
	13	1345	head pull through		
	14	1495	head pull through		
	15	1331	head pull through		
	16	1414	head pull through		
Avera	ge	1367			
Standard Deviation		174			
COV	COV				
Average Spec	Average Specific Gravity				
Average Moist	ure Content	12.6%			

Lateral Load, Perpendicular to the Grain in 0.55 Specific Gravity					
Sample ID	Specimen	Load (lbf)	Failure Type		
	1	1339	head pull through		
	2	1938	head pull through		
	3	1306	head pull through		
	4	1851	head pull through		
	5	1602	head pull through		
	6	1502	head pull through		
	7	1645	head pull through		
CTX-381000	8	1735	head pull through		
C1X-381000	9	1305	head pull through		
	10	1223	head pull through		
	11	1584	head pull through		
	12	1755	head pull through		
	13	1150	head pull through		
	14	1630	head pull through		
	15	1276	head pull through		
	16	1357	head pull through		
Average	e	1512			
Standard Deviation		239			
COV		15.8%			
Average Specific Gravity		0.50			
Average Moistur	e Content	12.7%			

EVALUATION REPORT TABLES

Table 1 – Fastener Specifications

			Table 1 – 1	asterier opecific	Allowable Steel Strength			
	Fastener Designation	Minor Thread Diameter (in)	Shank Outside Thread Diameter (in)		Bending Yield Strength, Fyb (psi)	Tensile (lbf) [psi]	Shear (lbf) [psi]	
	14 x 2-1/2							
	14 x 3	0.144	0.168	0.242	444.400	(931)	(724)	
	14 x 4	0.144	0.166	0.242	141,400	[57,155]	[33,049]	
	14 x 6							
	15 x 3							
	15 x 3-1/2		0.201	0.275	151,600	(1,477) [58,024]	(1,019) [31,844]	
CTX	15 x 4	0.180						
	15 x 5							
	15 x 6							
	17 x 7	0.207	0.224	0.295	170,500	(1,851) [52,439]	(1,238) [31,470]	
	17 x 8							
	17 x 10							
	17 x 12							
	14 x 4							
	14 x 6			0.258	141 400	(931)	(724)	
BL	14 x 8	0.171	0.189					
Δ	14 x 10	0.171	0.109	0.230	141,400	[57,155]	[33,049]	
	14 x 12							
	14 x 14							
	17 x 5			0.295				
G.	17 x 7	0.207	0.224		170,500	(1,851) [52,439]	(1,238) [31,470]	
٥	17 x 9	0.207	0.224					
	17 x 11							

Table 2 – Reference Withdrawal (W) and Pull-Through (P) Design Values

	- IVEIGIGIICE VI	Thread		bf/in)		lbf)
Fas	tener Designation	Length		For Specific	Gravities of:	
		(in)	0.42	0.55	0.42	0.55
	14 x 2-1/2	1-1/2				
	14 x 3	1-1/2				
	14 x 4	2	156	170	294	358
	14 x 5	3				
	14 x 6	3				
	15 x 3	1-1/2				
×	15 x 3-1/2	2			298	403
CTX	15 x 4	2	141	183		
-	15 x 5	3				
	15 x 6	3				
	17 x 7	3-1/2	170	198		481
	17 x 8	4			364	
	17 x 10	4			304	
	17 x 12	4				
	14 x 4	2			70 202	239
	14 x 6	2				
_	14 x 8	2	450	470		
BL	14 x 10	2-1/2	156	170		
	14 x 12	2-1/2				
	14 x 14	2-1/2				
	17 x 5	2				
	17 x 7	2	170	400	272	
Б	17 x 9	2	170	198		323
	17 x 11	2-1/2	1			
	1		1	1		

Table 3 – Reference Lateral Design Values (Z) for Single Shear (Two-Member) Connections

Table 3 – Reference Lateral Design Values (Z			Lateral Desing Value					
	Fastener esignation	Side Member Thickness (in)	Fastener Penetration into Main Member, p (in)		0.42		0.55	
	esignation	THICKHESS (III)	Main Member, β (III)	Parallel to Grain, Z	Perpendicular to Grain, Z	Parallel to Grain, Z	Perpendicular to Grain, Z	
	14 x 2-1/2	0/4	1-3/4	450	405	400	454	
	14 x 3	3/4	2-1/2	150	125	180	154	
	14 x 4	1-3/4	2-1/4	182	187	215	209	
	14 x 6	3	3	240	222	335	240	
	15 x 3	2/4	2-1/4	457	420	220	400	
	15 x 3-1/2	3/4	2-3/4	157	132	226	180	
CTX	15 x 4	4.4/0	2-1/2	040	242	200	250	
	15 x 5	1-1/2	3-1/2	240	243	280	259	
	15 x 6	2	4	258	258	296	261	
	17 x 7	0.0/4	4-1/4	20.4	204 205	439	286	
	17 x 8	2-3/4	5-1/4	384	265	439	286	
	17 x 10	2.4/0	6-1/2	470	070	FC4	202	
	17 x 12	3-1/2	8-1/2	470	273	73 561	302	
	14 x 4	3/4	3-1/4	182	187	215	209	
	14 x 6		3					
BL	14 x 8		5		222	335	240	
В	14 x 10	3	7	240				
	14 x 12		9					
	14 x 14		11					
	17 x 5	1-1/2	3-1/2	240	243	280	259	
Ι.	17 x 7	,	4-1/4					
GL	17 x 9	2-3/4	6-1/4	384	265	439	286	
	17 x 11	3-1/2	7-1/2	470	273	561	302	

Table 4 – Connection Geometry

			<u> </u>			
Connection Geometry/Criteria	Diameters	CTX 14 Nominal Diameter (inches)	CTX 15 Nominal Diameter (inches)	CTX 17 Nominal Diameter (inches)	BL 14 Nominal Diameter (inches)	GL 15 Nominal Diameter (inches)
Minimum Edge Distance						
Loading Parallel to Grain	8	1.34	1.61	1.79	1.51	1.79
Loading Perpendicular to Grain, Loaded Edge	8	1.34	1.61	1.79	1.51	1.79
Loading Perpendicular to Grain, Unloaded Edge	8	1.34	1.61	1.79	1.51	1.79
Minimum End Distance						
Tension Load Parallel to Grain	15	2.52	3.02	3.36	2.84	3.36
Compression Load Parallel to Grain	10	1.68	2.01	2.24	1.89	2.24
Load Perpendicular to Grain	10	1.68	2.01	2.24	1.89	2.24
Spacing (Pitch) Between Fasteners in a Row						
Parallel to Grain	15	2.52	3.02	3.36	2.84	3.36
Perpendicular to Grain	10	1.68	2.01	2.24	1.89	2.24
Spacing (Gage) Between Rows of Fasteners						
In-Line	5	0.84	1.01	1.12	0.95	1.12
Staggered	2.5	0.42	0.50	0.56	0.47	0.56
Minimum Penetration into Main Member for Single Shear Connections	6	1.01	1.21	1.34	1.13	1.34

Table 5 – Exposure Conditions for Fasteners with Intended Use and Limitations of Recognition

Exposure Condition	Typical Applications	Recognition Limitations		
Corrosion Resistance of Fasteners				
1	Treated wood in dry use applications	Limited to use where equilibrium moisture content of the chemically treated wood meets the dry service conditions as described in the NDS		
3 General construction		Limited to freshwater and chemically treated wood exposure, e.g., no saltwater exposure		

CALCULATIONS

Specific Gravity and Moisture Content

Specific gravity and moisture content were tested as described in the Test Methods section of this report. The following is a sample calculation to show how the specific gravity and moisture content of each wood member was calculated.

Measured Values

Board ID	Length (in)	Width (in)	Thickness (in)	Mass 1 (g)	Mass 2 (g)
1A	3.52	3.47	2.04	190.61	170.24
1B	3.51	3.47	1.54	137.25	122.01

Calculated Values

Board ID	Volume (in ³)	Moisture Content	Specific Gravity
1A	24.92	11.97%	0.417
1B	18.76	12.49%	0.397

Average Values

Board ID	Average Moisture Content	Average Specific Gravity
1	12.2%	0.41

Two sections were cut from board number "1" shown above. The dimensions (Length, Width, and Height) of each section were measured in inches with a digital caliper in three places and averaged to find the measured values shown in the table above. These three values were then multiplied together to find Volume, in cubic inches. Mass 1 was then taken in grams, using a digital scale for the purpose of determining the moisture content of each section of the board. The sections of the board were then placed into an oven at 103 degrees Celsius, and the mass was checked every couple of hours, until the mass was no longer decreasing significantly. The final mass (Mass 2), was used to determine the moisture content and specific gravity of the board.

Moisture content was calculated as the change in mass divided by the oven dry mass for each section. In this way, we have effectively taken the mass of the water that was inside the wood, and divided it by the actual mass of the oven dried specimen.

MC (%) =
$$100 \times \frac{1 - 100 \times 1 - 100 \times 1 \times 1}{1 \times 100 \times 1}$$

Specific Gravity was calculated by taking the oven dry mass of each section of wood, dividing by the volume of the section, and multiplying by a constant (0.061). The value of the constant was determined based on the units which were used to measure the specimen, in accordance with ASTMD2395-07a.

Finally, the two values calculated for moisture content and specific gravity for the board were averaged, and those values were reported as the specific gravity and moisture content for that specific board. If more than 1 board was used in a data set, the values of specific gravity and moisture content of each board were averaged, and those values were reported.

Tensile and Shear Testing

Tensile and shear testing were conducted on each set of specimens, and then reference design values were calculated based on the average reported load and stress for the data set. The average load and stress for each set was divided by a safety factor of 3, and those values were reported as the reference design values for the respective screw.

Bend Testing

The nominal fastener yield strength (F_{yb}) was determined by use of the following equation, based on the test results, as found in the Test Method section of this report. The value of F_{yb} is reported as the design value for this test.

 $F_{yb} = M_y/S$ Where:

 F_{yb} = nominal fastener yield strength, psi S = effective plastic section modulus = $D^3/6$, in³ D = root diameter, in M_y = $P s_{bp}/4$, in-lbf

P = test load as determined from the load deformation curve (5% offset method), lbf S_{bp} = cylindrical bearing point spacing, in

Withdrawal Reference Design Values

Withdrawal testing was conducted on each set of specimens, and then reference design values were calculated based on the average reported load for that data set. The average ultimate load (in pounds of force) was divided by 5, and that value was reported as the reference design value for the evaluation report tables.

Head Pull Through Reference Design Values

Head Pull Through testing was conducted on each set of specimens, and then reference design values were calculated based on the average reported load for that data set. The average ultimate load was divided by 5, and that value was reported as the reference design value for the evaluation report tables.

Lateral Reference Design Values

Lateral testing was conducted on each set of specimens, and then reference design values were calculated based on the average reported load for that data set. The load was divided by 5, and that value was reported as the reference design value for the evaluation reporttables.

Number of Specimens Tested Per Data Set

The minimum number of specimens tested per set was calculated in accordance with ASTM D2915 "Evaluating Allowable Properties for Grades of Structural Lumber", Section 3.4.2, Equation 1. The equation is shown as follows:

$$n = \frac{tt}{0.05} CCVV^2$$

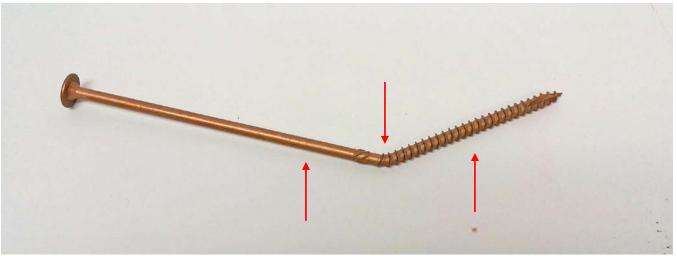
Where:

n =the number of samples in a test series

t = A constant based on the number of samples in a test series, found in Table 1 of ASTM D 2915 CV = Coefficient of Variation, equal to the standard deviation divided by the average of a data set

First, the minimum numbers of samples (15) were tested in a series. Then the above equation was used to determine the required coefficient of variation. The actual coefficient of variation was calculated and compared to the required value. If the actual COV was less than or equal to the required COV, testing could be stopped. If the actual COV was greater than the required COV, testing continued until the actual COV was less than or equal to the calculated COV.

TEST EQUIPMENT


- 1. MTS Model 4501033 11,200 lbf load cell, MM210-009.2, S/N 105191, Calibrated 4/12/13, Calibration Due 4/12/14
- 2. MTS Model QTest/50LP Crosshead Displacement, MM210-009.6, S/N 1532, Calibrated 4/12/13, Calibration Due 4/12/14
- 3. Fischer Scientific Model 630F Isotemp Oven, MM190-015, S/N 256, Calibrated 8/7/13, Calibration Due 8/7/14
- Mettler Model BB2400 2400 Gram Balance, PT-163-019, S/N M18988, Calibrated 7/10/13, Calibration Due 7/10/14
- MTS Model 661.19 E-04 5.5 kip Load Cell, MTA-027.2, S/N V66160, Calibrated 12/3/12, Calibration Due 12/3/13
- MTS Model 318.10 LVDT/Actuator, MTA-027.1, S/N 0175914P, Calibrated 12/3/12, Calibration Due 12/3/13
- 7. Mitutoyo Model 500-321 6 inch Digital Caliper, MM160-016, S/N 7141983, Calibrated 8/8/13, Calibration Due 8/8/14
- 8. Mitutoyo Model CD-6C 6 inch Digital Caliper, MM160-106, S/N 0080204, Calibrated 8/8/13, Calibration Due 8/8/14

REFERENCES

- 1. "AC233." Acceptance Criteria for Alternate Dowel-Type Threaded Fastners, ICC Evaluation Service.
- 2. "AISI S904." Standard Test Method for Determiningthe Tensile and Shear Strength of Screws, American Iron and Steel Institute.
- 3. "AC233." Acceptance Criteria for Alternate Dowel-Type Threaded Fastners, ICC Evaluation Service
- 4. "ANSI/AF&PA." *National Design Specification for Wood Construction (NDS), American Forest & Paper Association.*
- 5. "ASTM A370." Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International.
- 6. "ASTM D1037." Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials, ASTM International.
- 7. "ASTM D1761." Test Method for Mechanical Fasteners in Wood, ASTM International.
- 8. "ASTM D2395." Standard Test Method for Specific Gravity of Wood and Wood-Based Materials, ASTM International.
- 9. "ASTM D2915." Standard Practice for Evaluating Allowable Properties for Grades of Structural Lumber, ASTM International.
- 10."ASTM D4442." Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials, ASTM International.
- 11."ASTM F1575." Standard Test Method for Determining Bending Yield Moment of Nails, ASTM International.
- 12. "NASM1312-20." *National Aerospace Standard Practice for Fastener Test Methods, Method 20, Single Shear,* Aerospace Industries Association of America, Inc.

DIGITAL PHOTOGRAPHS



Figure 1 – A setup photograph for bend testing, in accordance with ASTM F1575-03. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

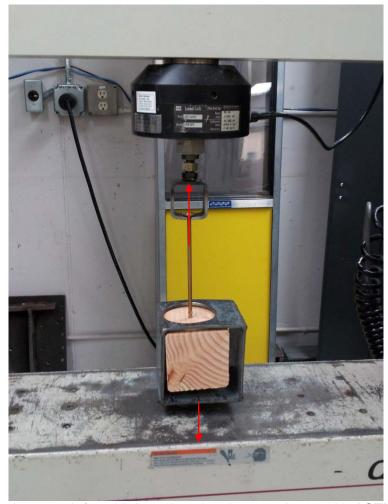


Figure 2 – A setup photograph for tensile testing, in accordance with AISI S904-08. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

Figure 3 – A setup photograph for shear testing, in accordance with AISI S904-08. A CTX 516400 specimen is shown. The red arrows show the direction the force was applied. The head was cut off of the specimen to allow for ease of loading into the fixtures.

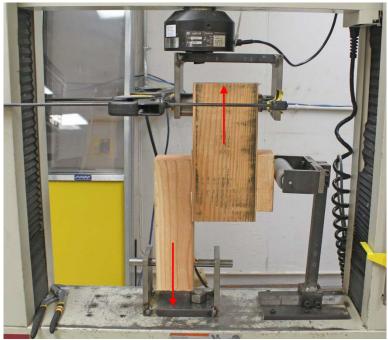


Figure 4 – A setup photograph for withdrawal testing, in accordance with ASTM D1761-06. A CTX 381000 specimen is shown. The red arrow shows the direction the force was applied.

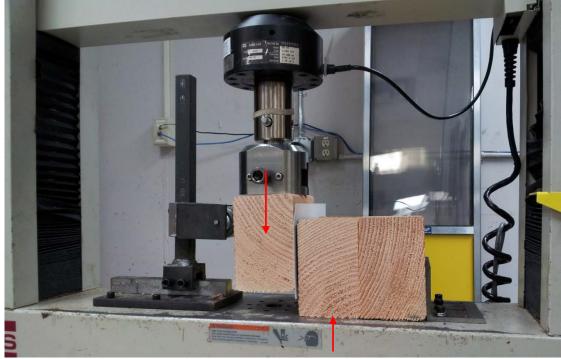


Figure 5 – A setup photograph for head pull through testing, in accordance with ASTM D1037-12. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

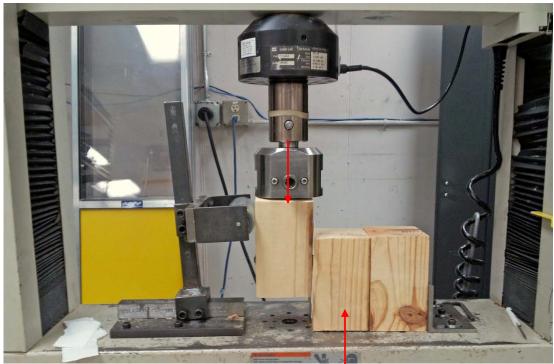


Figure 6 – A setup photograph for lateral single shear testing, in accordance with ASTM D1761-12. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

Figure 7 – A setup photograph for lateral single shear testing, perpendicular to the grain, modified setup based on ASTM D1761-12. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

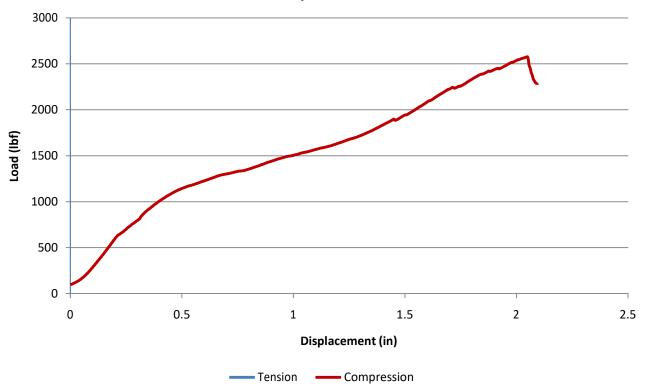
Figure 8 – A setup photograph for lateral single shear testing, parallel to the grain incompression, modified setup based on ASTM D1761-12. This setup was used to compare the tension and compression methods of testing lateral single shear. A CTX 381000 specimen is shown. The red arrows show the direction the force was applied.

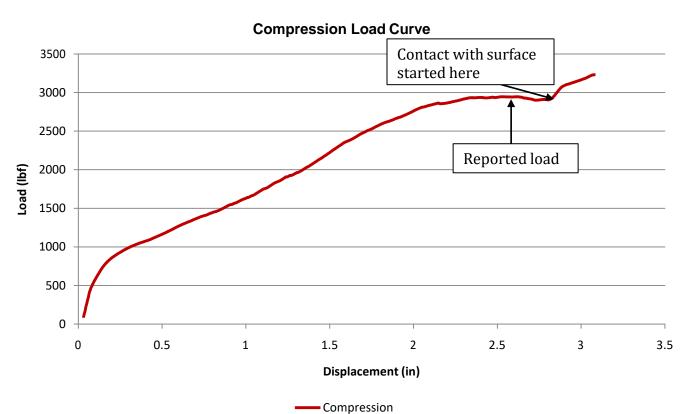
APPENDIX A Lateral Shear, Comparison of Tension Vs Compression

The lateral single shear testing was performed in tension (as specified in ASTM D1761-12) for the parallel to the grain tests, and in compression for the perpendicular to the grain tests. The test setups can be seen in Figures 6, and 7 for tension and compression, respectively.

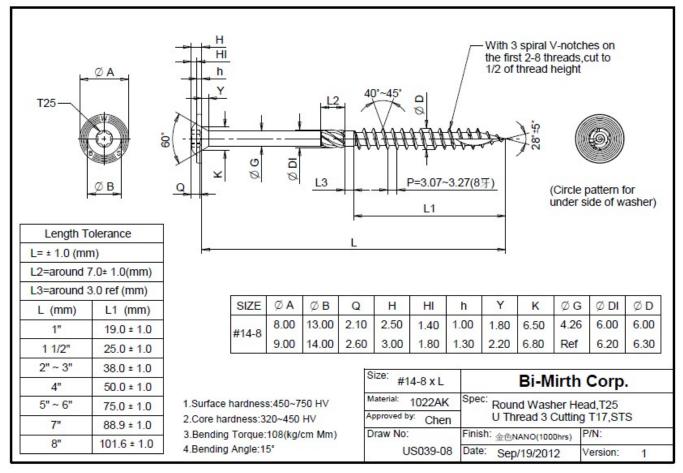
One set of comparison data was taken, to show that the results of the single shear testing were comparable whether the tests were performed in tension or in compression. This data set was taken with 15 tests from each tension in compression, in 0.55 specific gravity wood, using the largest screw diameter, side, and main member thicknesses. The side member was 3.5 inches, the main member was 7 inches (with 6.5 inches of penetration), and the screws used were the CTX 381000 (17 x 10). A picture of the test setup for compression can be seen in Figure 8. The setup for the tension test was the same as shown in Figure 6.

Test Data


Lateral Load Te	Lateral Load Test (Tension), 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)	
	1	2335	
	2	3359	
	3	2670	
	4	2611	
	5	2846	
	6	2628	
	7	2306	
CTX 381000	8	2746	
	9	2377	
	10	3304	
	11	2986	
	12	3344	
	13	2910	
	14	3078	
	15	2573	
Average		2805	
Standard Deviation		355	
COV		12.7%	
Average Specific Gravity		0.53	
Average Moisture Content		12.9%	


Lateral Load Test (Compression), 0.55 Specific Gravity		
Sample ID	Specimen	Load (lbf)
	1	2732
	2	2926
	3	2721
	4	3200
	5	2250
	6	2575
	7	2638
CTX 381000	8	2936
	9	2468
	10	2707
	11	2591
	12	2831
	13	2463
	14	3350
	15	2913
Average		2753
Standard Deviation		286
COV		10.4%
Average Specific Gravity		0.53
Average Moisture Content		12.9%

A sample of data from each the tension and compression sets can be seen below. It should be noted that on occasion the compression specimens would deflect to a point that the side member would come in contact with the surface that the main member was resting on, before ultimate failure had occurred. When this happened, the load was taken at the first drop in load. The first drop in load was determined by the test technician, generally as a point along the portion of the curve that had begun to flatten out (after yielding had occurred), as a significant drop in load. On the following page, the first plot shows a normal load curve of a sample in tension and in compression, while the second plot shows a sample that had used the first drop in load as its reported value.



APPENDIX B

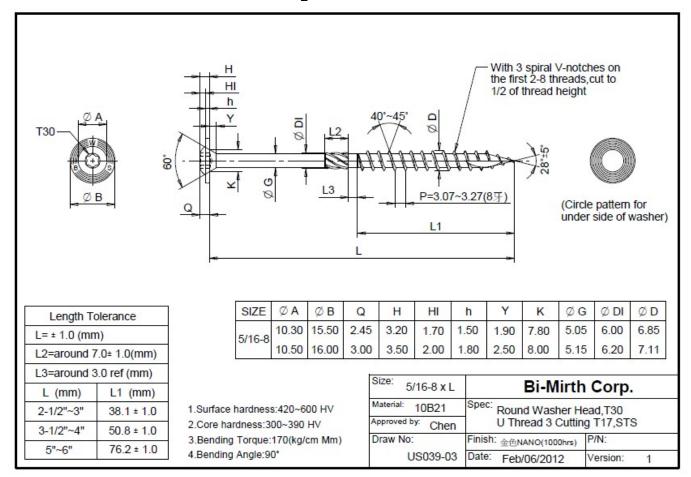

Part Drawing for CTX 14 Fasteners

Figure B-1 – A part level drawing for the CTX 14 fasteners, lengths from 2-1/2 to 8 inches. The six inch fastener does not have the knurled shoulder.

Part Drawing for CTX 15 Fasteners

Figure B-2 – A part level drawing for the CTX 15 fasteners, lengths from 3 to 6 inches. The six inch fastener does not have the knurled shoulder.

Part Drawing for CTX 17 Fasteners

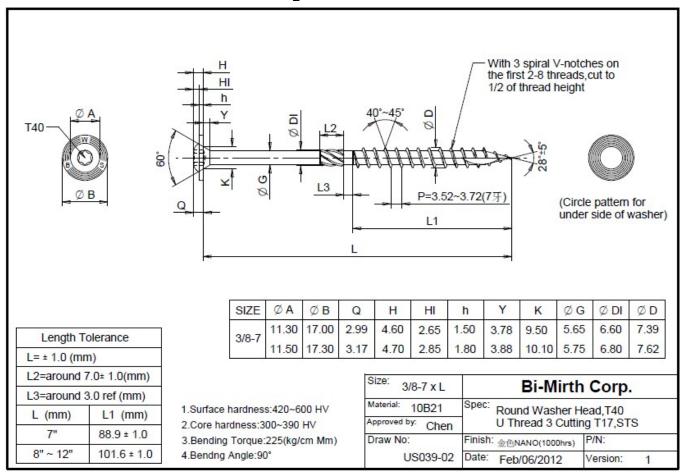
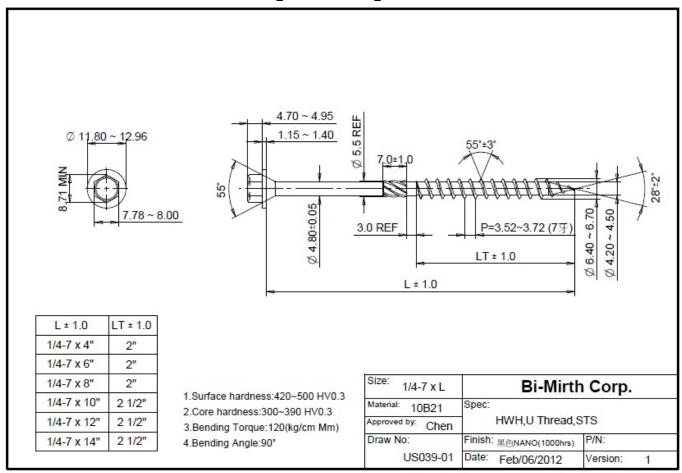



Figure B-3 – A part level drawing for the CTX 17 fasteners, lengths from 7 to 12 inches.

Part Drawing for Black Log 14 Fasteners

Figure B-4 – A part level drawing for the Black Log 14 fasteners, lengths from 4 to 14 inches. The six inch and longer fasteners do not have the knurled shoulder.

Part Drawing for Gray Log 17 Fasteners

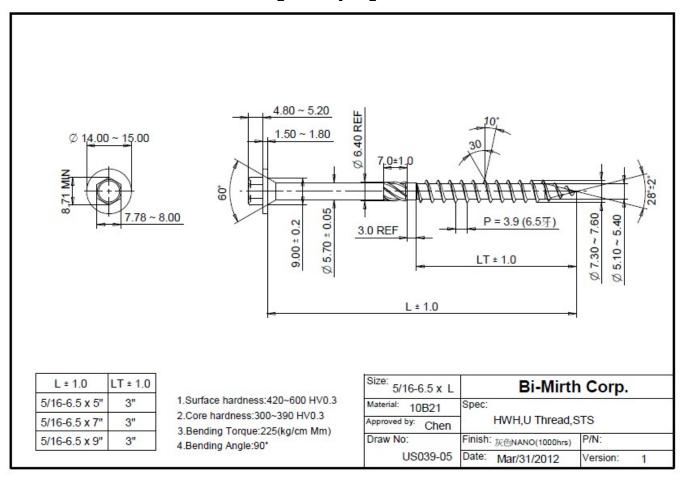


Figure B-4 – A part level drawing for the Gray Log 17 fasteners, lengths from 5 to 11 inches.